3-METHOXY-4,6-DIHYDROXYMORPHINANDIEN-7-ONE, AN ALKALOID FROM CROTON BONPLANDIANUM

K. P. TIWARI, R. N. CHOUDHARY and G. D. PANDEY

Department of Chemistry, University of Allahabad, Allahabad, India

(Revised received 29 July 1980)

Key Word Index—Croton bonplandianum; Euphorbiaceae; 3-methoxy-4,6-dihydroxymorphinandien-7-one; structural determination.

Abstract—A new alkaloid, 3-methoxy-4,6-dihydroxymorphinandien-7-one, and norsinoacutine have been isolated from extracts of Croton bonplandianum.

INTRODUCTION

Several alkaloids [1-18] have been isolated from species of the genus *Croton*, but no work has been reported on *Croton bonplandianum*. A systematic chemical examination of this plant was, therefore, undertaken and the alkaloidal constituents are reported in the present communication.

RESULTS AND DISCUSSION

The new alkaloid isolated is assigned the structure 3-methoxy-4,6-dihydroxymorphinandien-7-one (1) $C_{17}H_{17}NO_4$ on the basis of following evidence. The presence of nitrogen as a secondary amine was suggested by the appearance of a band at $3215\,\mathrm{cm}^{-1}$ in the IR spectrum [1]. The other IR bands at $3400\,\mathrm{cm}^{-1}$ show the presence of an OH group and the bands at 1665, 1634 and $1608\,\mathrm{cm}^{-1}$ indicate the presence of a dienone [1]. Furthermore the appearance of an UV absorption band at $238\,\mathrm{nm}$ confirms the presence of a cross conjugated system [2].

The compound (50 mg) when heated under reflux (2 hr) in MeOH with excess MeI in the presence of Na_2CO_3 , yielded the N-O-trimethylmethiodide derivative (30 mg), $C_{21}H_{26}INO_4$. Me_2CO , mp 163– 5° (Me_2CO), which was found to be identical with N-O-dimethylnorsinoacutine methiodide [3], thereby suggesting that the new alkaloid differed from norsinoacutine $C_{18}H_{19}NO_4$ (2) only in the presence of a OH group in place of a OMe group. The same methiodide is also obtained from the N-methyl-4,6-dihydroxy-3-methoxymorphinandienone [19] which confirms the presence of two OH groups and one OMe group.

MeO
$$\frac{3}{1}$$
HO $\frac{2}{1}$
 $\frac{1}{1}$
 $\frac{1}$
 $\frac{1}{1}$
 $\frac{1}{1}$
 $\frac{1}{1}$
 $\frac{1}{1}$
 $\frac{1}{1}$
 $\frac{1}{1}$

The signals observed in the NMR spectrum at δ 6.56 (H, C-1), 6.83 (H, C-2), 7.63 (H, C-5), 6.15 (H, C-8) and 3.83 (3 H, OMe, C-3) are due to the presence of two aromatic protons, two olefinic protons and one OMe group, respectively [1]. The signal at δ 3.75, observed in norsinoacutine did not appear in the spectrum of 1, showing the absence of a OMe group at C-4 [1].

The mass spectrum [4,20] of the compound showed a M^+ at m/e 299 and other prominent peaks at m/e 284 ($M^+ - Me$), 277 ($M^+ - CO$), 256 (284 – CO) and 164 which supported the proposed structure for the compound.

Another compound, mp 113° , $C_{18}H_{19}NO_4(2)$ was obtained from the alkaloidal mixture on column chromatography, which was identified as nonsinoacutine [5].

EXPERIMENTAL

Extraction and isolation of alkaloids. The air dried and powdered plant (5 kg) was extracted with 2% HOAc soln. The extract (101.) was concd under red. pres. to 500 ml and basified with 25% NH₄OH soln. The basified extract was continuously shaken with CHCl₁ for 2 hr and the organic layer separated. The solvent was removed in vacuo to yield a mixture of alkaloids. The crude alkaloidal mixture showed two spots on TLC, was adsorbed on an Al2O3 column and eluted with CHCl3-MeOH (19:1). The first eluate yielded an amorphous compound, which on crystallization from EtOAc at 0° yielded crystals of norsinoacutine [5] (310 mg), mp 113°. Successive elution with MeOH yielded another compound (145 mg), mp 143° (MeOH-EtOAc). Found: C, 65.19; H, 6.41; N, 3.59; C₁₇H₁₇NO₄. EtOAc requires C, 65.12, H, 6.46, N, 3.62%. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 238; IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400, 3215, 1665, 1634, 1608; MS m/e (rel. int.): 299 (M⁺), 284, 277, 266, 256: ¹H NMR (CDCl₃) δ 3.83 (3 H), 6.15 (1 H), 6.56 (1 H), 6.83 (1 H), 7.63 (1 H).

Preparation of methiodide derivative. 1 (50 mg) when heated under reflux (2 hr) in MeOH with excess MeI in the presence of Na₂CO₃ gave a product, which was adsorbed onto an Al₂O₃ column. Elution with Me₂CO–MeOH (8:1) yielded the methiodide derivative (39 mg) which crystallized from Me₂CO, mp 163–5°. Found C, 53.1; H, 5.9; $C_{21}H_{26}INO_4$. Me₂CO requires C, 53.2; H, 6.0%. It was identical with N-O-dimethylnorsinoacutine methiodide [3].

Acknowledgements—Our thanks are due to C.S.I.R., New Delhi for the award of a P.D.F. to one of us (R.N.C.). The award of a S.R.F. by C.S.I.R., New Delhi to G.D.P. is also acknowledged. We are also grateful to Dr. R. S. Grewal and Dr. S. Selvavinayakam (Ciba Geigy Research Centre, Bombay) for spectral analysis.

REFERENCES

- Stuart, K. L. and Chambers, C. (1967) Tetrahedron Letters 2879.
- 2. Bhakuni, D. S. and Dhar, M. M. (1968) Experientia 24, 10.
- Stuart, K. L., Chambers, C. and Byfield, D. (1969) J. Chem. Soc. C 1681.
- 4. Chambers, C. and Stuart, K. L. (1968) Chem. Commun. 328.
- Chambers, C., Haynes, L. J. and Stuart, K. L. (1966) Chem. Commun. 449.
- Haynes, L. J., Husbands, G. E. M. and Stuart, K. L. (1967) Chem. Commun. 15.
- 7. Bhakuni, D. S. and Dhar, M. M. (1969) Experientia 25, 354.
- 8. Stuart, K. L. and Wooming, R. B. (1969) Phytochemistry 8, 777.

- Chan, W. R., Taylor, D. R. and Willis, C. R. (1967) Chem. Commun. 191.
- Stuart, K. L., Haynes, L. J., Barrett, M. and Husbands, G. E. M. (1968) Tetrahedron Letters 4473.
- Kametani, T., Fukumoto, K., Satoh, F. and Yagi, H. (1969)
 J. Chem. Soc. C 520.
- 12 Kutney, J. P., Klein, F. K., Eigendorf, G., McNeil, D. and Stuart, K. L. (1971) Tetrahedron Letters 4973.
- Stuart, K. L., Kenneth, L. and Grahm, L. (1971) J. Chem. Soc. D 392.
- Stuart, K. L., Kenneth, L., Byfield, D., Chambers, C. and Husbands, G. E. M. (1970). J. Chem. Soc. C, 1228.
- Haynes, L. J., Husbands, G. E. M. and Stuart, K. L. (1968). J. Chem. Soc. C, 951.
- Stuart, K. L. and Chambers, C. (1967). Tetrahedron Letters 4135
- Haynes, L. J., Stuart, K. L., Barton, D. H. R. and Kirby, G. W. (1966). J. Chem. Soc. C 1676.
- 18. Haynes, L. J. and Stuart, K. L. (1963). J. Chem. Soc. 1784.
- Rearick, D. E. and Gates, M. (1970). Tetrahedron Letters 507.
- 20. Stuart, K. L. (1971) Chem. Rev. 71, 47.